1D river modelling data
    • 07 Mar 2023
    • 1 Minute to read
    • Dark
      Light

    1D river modelling data

    • Dark
      Light

    Article summary

    The following datasets may be useful when modelling with the 1D river solver.

    Creating a river network

    This dataset contains a completed river network made up of river sections, a flow-time (QT) boundary and a downstream flow-head (QH) boundary. This dataset is used with the guide Getting Started with 1D river modelling.

    Adding tributaries

    Effectively calculating the flows and water levels within a river is key to better accuracy. One way to account for additional water entering a main river reach is to model tributaries. This dataset contains two networks - one before adding a tributary and one after the tributary has been joined to the main reach. This dataset is used with the guide How to join two river reaches

    Using FEH boundaries

    The FEH Boundary is a rainfall-runoff model based on procedures described in the Flood Estimation Handbook (1999).The FEH Rainfall Runoff Method Boundary (FEHBDY) derives an inflow hydrograph from a catchment or sub-catchment. The hydrograph then becomes a boundary condition equivalent to a Flow Time Boundary. This dataset contains an example of a completed FEH boundary. Specifically, the data below is from the guide: How to add two snowmelt rates to FEH boundaries

    Using ground elevation data

    Information on local topography and ground elevation data is useful when creating new 1D river sections from a map or extending river sections. This dataset contains a Digital Terrain Model (DTM) produced using Light Detection And Ranging (LiDAR). 

    Adding Bridges

    Water levels are often influenced significantly by bridges within the watercourse. The normal river equations (Saint-Venant equations) are not always appropriate for application to these structures. Explicit modelling of bridges within the watercourses is therefore required in most cases. This dataset contains two networks - one before adding a bridge structure and one after the bridge (and associated spill unit to account for overtopping of the bridge) have been added to the river network. 

    Adding Culverts

    In addition to bridges within the watercourse, culverts can also have a significant impact on water levels and flow conveyance. It is particularly important to account for hydraulic losses at the culvert inlet and outlet along with losses throughout the culvert barrel. Flood Modeller can be used to represent culverts using a combination of culvert inlets, outlets, bends and conduit units. This dataset contains two networks - one before adding a culvert structure and one after the culvert has been added to the network. 


    Was this article helpful?

    Changing your password will log you out immediately. Use the new password to log back in.
    First name must have atleast 2 characters. Numbers and special characters are not allowed.
    Last name must have atleast 1 characters. Numbers and special characters are not allowed.
    Enter a valid email
    Enter a valid password
    Your profile has been successfully updated.